If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+10=25
We move all terms to the left:
7x^2+10-(25)=0
We add all the numbers together, and all the variables
7x^2-15=0
a = 7; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·7·(-15)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*7}=\frac{0-2\sqrt{105}}{14} =-\frac{2\sqrt{105}}{14} =-\frac{\sqrt{105}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*7}=\frac{0+2\sqrt{105}}{14} =\frac{2\sqrt{105}}{14} =\frac{\sqrt{105}}{7} $
| 7.00+15.00x=100 | | 263.76=24×p | | v-6v=-5 | | 10=-14+2p | | Y=-2+0.3x | | n-9n=-296 | | 6h-8=52 | | 4b-3b+b+b=18 | | 15.00+7.00x=100 | | 4.2x+10=4x+4. | | 6u-10=2(u-9 | | 24÷263.76=p | | 8x-8=13x-14 | | 5^x+9=133 | | 4q+2q-6q+q=19 | | g+47=56 | | 15.50+1.50x=26.00 | | 13x+5=6x+37 | | 11–2(d–1)=-2d+13 | | 177=-13s | | 19g+-7g+-11g-12g+12g=4 | | 24-7g=10 | | r-22=23 | | 24×263.76=p | | 9x²-4x+2=3x-0 | | 19g+-7g+-11g-12g+12g=5 | | 4x+11=84 | | 4w+3=39 | | 2+2(2+4(1-x))x=+1 | | 59x=5133 | | (x-12)+(x+16)=90 | | x-13-4=0 |